• 欢迎访问书法思考网,注册用户可以投稿!

初中数学,“将军饮马”的七大模型

cc518学习网精品学习资料总目录

让我们先来了解“将军饮马”这个故事。

古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。

有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军A从出发到河边饮马,然后再到B地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马问题.

下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题.

根据公理:连接两点的所有线中,线段最短

若A、B在河流的异侧,直接连接AB,AB与l的交点即为所求.

若A、B在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.

将军饮海伦解决本问题时,是利用作对称点把折线问题转化成直线

现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想

轴对称的两个图形有如下性质:

①关于某条直线对称的两个图形是全等形;

②对称轴是任何一对对应点所连线的垂直平分线;

③两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.

将军饮马的数学问题,考察的知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。共有七大模型:

模型1,PA+PB最小

模型2,PA-PB最小

模型3,PA-PB最大

【变形】异侧时,也可以问:在直线l上是否存在一点P使得直线l为∠APB的角平分线

模型4,周长最短

模型5,“过河”最短距离

模型6,线段和最小


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:初中数学,“将军饮马”的七大模型
喜欢 (0)

您必须 登录 才能发表评论!