• 欢迎访问书法思考网,注册用户可以投稿!

九年级数学期中上册知识点

#初三# 导语】虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。本篇文章是为您整理的《九年级数学期中上册知识点》,供大家借鉴。

  

1.九年级数学期中上册知识点

  单项式与多项式

  仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

  当一个单项式的系数是1或-1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例。

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。

  性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。

  性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  

2.九年级数学期中上册知识点

  一、反比例函数

  1.形如y=k/x(k≠0)或y=kx^-1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^-1表示负一次

  2.在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  3.在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0

  4.设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2

  二、二次函数

  1.形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

  2.二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac-b^2/4a),对称轴是直线x=-b/2a

  3.对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)

  4.一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

  当b^2-4ac>0时,函数图像与x轴有两个交点。

  当b^2-4ac=0时,函数图像与x轴有一个交点。

  当b^2-4ac<0时,函数图像与x轴没有交点。

  5.当a>0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac-b^2/4a;当a<0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac-b^2/4a

  6.抛物线y=ax^2+c(a≠0)的对称轴是y轴

  7.对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧

  8.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  9.对于抛物线y=a(x-m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减

  三、相似三角形

  1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。

  3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)

  4.黄金分割

  把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1)/2,取其前三位数字的近似值是0.618。

  5.证明三角形相似的方法:

  (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

  照我们老师的方法来说就是A字型和8字型

  (2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似

  (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似

  (4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似

  (5)对应角相等,对应边成比例的两个三角形叫做相似

  

3.九年级数学期中上册知识点

  第一单元二次根式

  1、二次根式

  式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

  2、最简二次根式

  若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

  化二次根式为最简二次根式的方法和步骤:

  1如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

  2如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

  3、同类二次根式

  几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  4、二次根式的性质

  5、二次根式混合运算

  二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号。

  第二单元一元二次方程

  一、一元二次方程

  1、一元二次方程

  含有一个未知数,并且未知数的次数是2的整式方程叫做一元二次方程。

  2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  二、一元二次方程的解法

  1、直接开平方法

  2、配方法

  配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其

  3、公式法

  4、因式分解法

  因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

  三、一元二次方程根的判别式

  根的判别式

  四、一元二次方程根与系数的关系

  

4.九年级数学期中上册知识点

  不等式的判定:

  ①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  ②在不等式“a>b”或“a<b”中,a叫作不等式的左边,b叫作不等式的右边;

  ③不等号的开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

  平行四边的定义

  1、定义:两线对边分别平行的四边形叫做平行四边形,

  2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

  3、判定:(1)一组对边平行且相等的四边形是平行四边形。

  (2)两条对角线互相平分的四边形是平行四边形。

  (3)两组对边分别相等的四边形是平行四边形。

  (4)两组对角分别相等的四边形是平行四边形。

  (5)一组对边平行,一组对角相等的四边形是平行四边形。

  (6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

  

5.九年级数学期中上册知识点

  等边三角形

  1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

  (注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

  2、性质:⑴等边三角形的内角都相等,且均为60度。

  ⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

  ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

  3、判定:⑴三边相等的三角形是等边三角形。

  ⑵三个内角都相等的三角形是等边三角形。

  ⑶有一个角是60度的等腰三角形是等边三角形。

  ⑷有两个角等于60度的三角形是等边三角形。


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:九年级数学期中上册知识点
喜欢 (0)

您必须 登录 才能发表评论!