• 欢迎访问书法思考网,注册用户可以投稿!

九年级数学上册知识点

【#初三# 导语】学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。下面是©为您整理的《九年级数学上册知识点》,仅供大家参考。

  

1.九年级数学上册知识点

  1、数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏);2)有标准。

  2、非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3、倒数:①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aC.0

  4、相反数:①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5、数轴:①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6、奇数、偶数、质数、合数(正整数自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7、绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  

2.九年级数学上册知识点

  一、圆的定义

  1、以定点为圆心,定长为半径的点组成的图形。

  2、在同一平面内,到一个定点的距离都相等的点组成的图形。

  二、圆的各元素

  1、半径:圆上一点与圆心的连线段。

  2、直径:连接圆上两点有经过圆心的线段。

  3、弦:连接圆上两点线段(直径也是弦)。

  4、弧:圆上两点之间的曲线部分。半圆周也是弧。

  (1)劣弧:小于半圆周的弧。

  (2)优弧:大于半圆周的弧。

  5、圆心角:以圆心为顶点,半径为角的边。

  6、圆周角:顶点在圆周上,圆周角的两边是弦。

  7、弦心距:圆心到弦的垂线段的长。

  三、圆的基本性质

  1、圆的对称性

  (1)圆是图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是对称图形。

  2、垂径定理。

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5、夹在平行线间的两条弧相等。

  6、设⊙O的半径为r,OP=d。

  7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角的外心就是斜边的中点。)

  8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

  直线与圆没有交点,直线与圆相离。

  9、中,A(x1,y1)、B(x2,y2)。

  10、圆的切线判定。

  (1)d=r时,直线是圆的切线。

  切点不明确:画垂直,证半径。

  (2)经过半径的外端且与半径垂直的直线是圆的切线。

  切点明确:连半径,证垂直。

  

3.九年级数学上册知识点

  一、重要概念

  分类:

  1、代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2、整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3、单项式与多项式

  没有加减运算的整式叫做单项式。数字与字母的积包括单独的一个数或字母几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x,=│x│等。

  4、系数与指数

  区别与联系:①从位置上看;②从表示的意义上看。

  5、同类项及其合并

  条件:①字母相同;②相同字母的指数相同。

  合并依据:乘法分配律

  6、根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:、是根式,但不是无理式是无理数。

  7.算术平方根

  ⑴正数a的正的平方根[a与平方根的区别];

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8、同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9、指数

  ⑴幂,乘方运算

  ①a0时,②a0时,0n是偶数,0n是奇数

  ⑵零指数:=1a0

  负整指数:=1/a0,p是正整数

  二、运算定律、性质、法则

  1、分式的加、减、乘、除、乘方、开方法则

  2、分式的性质

  ⑴基本性质:=m0

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法两种

  3、整式运算法则去括号、添括号法则

  4、幂的’运算性质:①②③=;④=;⑤

  技巧:

  5、乘法法则:⑴单⑵单⑶多多。

  6、乘法公式:正、逆用。

  a+ba-b=

  ab=

  7、除法法则:⑴单⑵多单。

  8、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

  9、算术根的性质:=;;a0;a0正用、逆用。

  10、根式运算法则:⑴加法法则合并同类二次根式;⑵乘、除法法则;⑶分母有理化:A.;B.;C..


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:九年级数学上册知识点
喜欢 (0)

您必须 登录 才能发表评论!