• 欢迎访问书法思考网,注册用户可以投稿!

高二数学必修二知识点总结

【#高二# 导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。©高二频道为你整理了《高二数学必修二知识点总结》希望对你的学习有所帮助!

1.高二数学必修二知识点总结

  空间两条直线只有三种位置关系:平行、相交、异面

  1、按是否共面可分为两类:

  (1)共面:平行、相交

  (2)异面:

  异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

  异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

  两异面直线所成的角:范围为(0°,90°)esp.空间向量法

  两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

  2、若从有无公共点的角度看可分为两类:

  (1)有且仅有一个公共点——相交直线;

  (2)没有公共点——平行或异面

  直线和平面的位置关系:

  直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

  ①直线在平面内——有无数个公共点

  ②直线和平面相交——有且只有一个公共点

  直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

2.高二数学必修二知识点总结

  等比数列的基本性质

  ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).

  ⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

  ⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.

  ⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}.

  ⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.

  ⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.

  ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

  ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

3.高二数学必修二知识点总结

  数列的图象

  对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:

  这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.

  由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.

  数列是一种特殊的函数,数列是可以用图象直观地表示的.

  数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.

  把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.

4.高二数学必修二知识点总结

  函数的性质:

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

  f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

  判别方法:定义法,图像法,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

  应用:求函数值和某个区间上的函数解析式。

5.高二数学必修二知识点总结

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高二数学必修二知识点总结
喜欢 (0)

您必须 登录 才能发表评论!