• 欢迎访问书法思考网,注册用户可以投稿!

高二数学下册必修五知识点

【#高二# 导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。©高二频道为你整理了《高二数学下册必修五知识点》希望对你的学习有所帮助!

1.高二数学下册必修五知识点

  函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2.高二数学下册必修五知识点

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

  3.不等式的性质

  (1)对称性:ab

  (2)传递性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可开方:a0

  (nN,n2).

  注意:

  一个技巧

  作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  一种方法

  待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.高二数学下册必修五知识点

  函数的奇偶性

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

  正确理解奇函数和偶函数的定义,要注意两点:

  (1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;

  (2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

4.高二数学下册必修五知识点

  ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).

  ⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

  ⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.…..

  ⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.

  ⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.

  ⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.

  ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

  ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

5.高二数学下册必修五知识点

  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

  ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

  ⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

  ⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高二数学下册必修五知识点
喜欢 (0)

您必须 登录 才能发表评论!