• 欢迎访问书法思考网,注册用户可以投稿!

高一年级数学必修四知识点

【#高一# 导语】高一阶段,是打基础阶段,是将来决战高考取胜的关键阶段,今早进入角色,安排好自己学习和生活,会起到事半功倍的效果。以下是©为你整理的《高一年级数学必修四知识点》,学习路上,©为你加油!

1.高一年级数学必修四知识点

  ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

  ⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

  ⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。a。a。…=a。a。a。…。

  ⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

  ⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

  ⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

  ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

  ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点

  初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。非初等函数是指凡不是初等函数的函数。

  初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的’函数,称为初等函数。

  非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。是函数的一个重要的分支。一般说来,大部分分段函数不是初等函数。如符号函数,狄利克雷函数,gamma函数,误差函数,Weierstrass函数。但是个别分段函数除外。

  1、指数函数:函数y=ax(a>0且a≠1)叫做指数函数

  a的取值a>10

  定义域x∈Rx∈R

  值域y∈(0,+∞)y∈(0,+∞)

  单调性全定义域单调递增全定义域单调递减

  奇偶性非奇非偶函数非奇非偶函数

  过定点(0,1)(0,1)

  注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

  a>1时,最小值f(a),值f(b);0

  ⑵对于任意指数函数y=ax(a>0且a≠1),都有f(1)=a。

  2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

  a的取值a>10

  定义域x∈(0,+∞)x∈(0,+∞)

  值域y∈Ry∈R

  单调性全定义域单调递全定义域单调递减

  奇偶性非奇非偶函数非奇非偶函数

  过定点(1,0)(1,0)

  3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

  ⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

  ⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

  ⑶a<0时,幂函数在(0,+∞)区间为减函数。

  当x从右侧无限接近原点时,图像无限接近y轴正半轴;

  当y无限接近正无穷时,图像无限接近x轴正半轴。

  幂函数总图见下页。

  4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

  反函数图像与原函数图像关于直线y=x对称。

3.高一年级数学必修四知识点

  (1)数列的概念和简单表示法

  了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。

  了解数列是自变量为正整数的一类函数。

  (2)等差数列、等比数列

  理解等差数列、等比数列的概念。

  掌握等差数列、等比数列的通项公式与前项和公式。

  能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

  了解等差数列与一次函数、等比数列与指数函数的关系。

4.高一年级数学必修四知识点

  【基本初等函数】

  一、指数函数

  (一)指数与指数幂的运算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

  当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2、分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

  3、实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

  注意:指数函数的底数的取值范围,底数不能是负数、零和1。

  2、指数函数的图象和性质

5.高一年级数学必修四知识点

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高一年级数学必修四知识点
喜欢 (0)

您必须 登录 才能发表评论!