• 欢迎访问书法思考网,注册用户可以投稿!

高三数学必修一上册知识点整理

【#高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。©高三频道为你整理了《高三数学必修一上册知识点整理》助你金榜题名!

1.高三数学必修一上册知识点整理

  【轨迹方程】就是与几何轨迹对应的代数描述。

  一、求动点的轨迹方程的基本步骤

  ⒈建立适当的坐标系,设出动点M的坐标;

  ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  *直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

2.高三数学必修一上册知识点整理

  学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。

  点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。

  空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。

  判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。

  要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

  已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

  判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。

  两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。

  面面垂直成直角,线面垂直记心间。

  一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

  空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

  引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。

  知识创新无止境,学问思辨勇攀登。

  多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。

  算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。

  展开分割好办法,化难为易新天地。

3.高三数学必修一上册知识点整理

  向量的的数量积

  定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

  定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:a•b=x•x’+y•y’。

  向量的数量积的运算律

  a•b=b•a(交换律);

  (λa)•b=λ(a•b)(关于数乘法的结合律);

  (a+b)•c=a•c+b•c(分配律);

  向量的数量积的性质

  a•a=|a|的平方。

  a⊥b〈=〉a•b=0。

  |a•b|≤|a|•|b|。

  向量的数量积与实数运算的主要不同点

  1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

  2、向量的数量积不满足消去律,即:由a•b=a•c(a≠0),推不出b=c。

  3、|a•b|≠|a|•|b|

  4、由|a|=|b|,推不出a=b或a=-b。

4.高三数学必修一上册知识点整理

  一、对数函数

  log.a(MN)=logaM+logN

  loga(M/N)=logaM-logaN

  logaM^n=nlogaM(n=R)

  logbN=logaN/logab(a>0,b>0,N>0a、b均不等于1)

  二、简单几何体的面积与体积

  S直棱柱侧=c*h(底面周长乘以高)

  S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)

  设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h

  S圆柱侧=c*l

  S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l

  S圆锥侧=1/2*c*l=兀*r*l

  S球=4*兀*R^3

  V柱体=S*h

  V锥体=(1/3)*S*h

  V球=(4/3)*兀*R^3

  三、两直线的位置关系及距离公式

  (1)数轴上两点间的距离公式|AB|=|x2-x1|

  (2)平面上两点A(x1,y1),(x2,y2)间的距离公式

  |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

  (3)点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr

  (A^2+B^2)

  (4)两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

  C2|/sqr(A^2+B^2)

  同角三角函数的基本关系及诱导公式

  sin(2*k*兀+a)=sin(a)

  cos(2*k*兀+a)=cosa

  tan(2*兀+a)=tana

  sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

  sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

  sin(兀+a)=-sina

  sin(兀-a)=sina

  cos(兀+a)=-cosa

  cos(兀-a)=-cosa

  tan(兀+a)=tana

  四、二倍角公式及其变形使用

  1、二倍角公式

  sin2a=2*sina*cosa

  cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

  tan2a=(2*tana)/[1-(tana)^2]

  2、二倍角公式的变形

  (cosa)^2=(1+cos2a)/2

  (sina)^2=(1-cos2a)/2

  tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

  五、正弦定理和余弦定理

  正弦定理:

  a/sinA=b/sinB=c/sinC

  余弦定理:

  a^2=b^2+c^2-2bccosA

  b^2=a^2+c^2-2accosB

  c^2=a^2+b^2-2abcosC

  cosA=(b^2+c^2-a^2)/2bc

  cosB=(a^2+c^2-b^2)/2ac

  cosC=(a^2+b^2-c^2)/2ab

  tan(兀-a)=-tana

  sin(兀/2+a)=cosa

  sin(兀/2-a)=cosa

  cos(兀/2+a)=-sina

  cos(兀/2-a)=sina

  tan(兀/2+a)=-cota

  tan(兀/2-a)=cota

  (sina)^2+(cosa)^2=1

  sina/cosa=tana

  两角和与差的余弦公式

  cos(a-b)=cosa*cosb+sina*sinb

  cos(a-b)=cosa*cosb-sina*sinb

  两角和与差的正弦公式

  sin(a+b)=sina*cosb+cosa*sinb

  sin(a-b)=sina*cosb-cosa*sinb

  两角和与差的正切公式

  tan(a+b)=(tana+tanb)/(1-tana*tanb)

  tan(a-b)=(tana-tanb)/(1+tana*tanb)

5.高三数学必修一上册知识点整理

  1.不等式的定义:a-b>0a>b,a-b=0a=b,a-b<0a

  ①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

  ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

  作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

  2.不等式的性质:

  ①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1)a>bb

  (2)a>b,b>ca>c(传递性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0时,a>bac>bc

  cbac

  运算性质有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ②关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高三数学必修一上册知识点整理
喜欢 (0)

您必须 登录 才能发表评论!