• 欢迎访问书法思考网,注册用户可以投稿!

高三数学必修五知识点梳理

【#高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。高三频道为你精心准备了《高三数学必修五知识点梳理》助你金榜题名!

1.高三数学必修五知识点梳理

  等比数列的基本性质

  ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

  ⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

  ⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a、a、a、…=a、a、a、…。

  ⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}也是等比数列,其公比分别为|q|}、{q}、{q}。

  ⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

  ⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

  ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

  ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高三数学必修五知识点梳理

  函数的值域与最值

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

  如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

3.高三数学必修五知识点梳理

  映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f—1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

  注意:

  ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

  ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

4.高三数学必修五知识点梳理

  等差数列前n项和公式S的基本性质

  ⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。

  ⑵在等差数列{a}中,当项数为2n(nN)时,S—S=nd,=;当项数为(2n—1)(n)时,S—S=a,=。

  ⑶若数列{a}为等差数列,则S,S—S,S—S,…仍然成等差数列,公差为、

  ⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。

  ⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a—b)。

  ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a—)上。

  ⑺记等差数列{a}的前n项和为S、若a>0,公差d<0,则当a≥0且a≤0时,S;若a

  1、等比中项

  如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

  有关系:

  注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

  2、等比数列通项公式

  an=a1xq’(n—1)(其中首项是a1,公比是q)

  an=Sn—S(n—1)(n≥2)

  前n项和

  当q≠1时,等比数列的前n项和的公式为

  Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

  当q=1时,等比数列的前n项和的公式为

  Sn=na1

  3、等比数列前n项和与通项的关系

  an=a1=s1(n=1)

  an=sn—s(n—1)(n≥2)

  4、等比数列性质

  (1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;

  (2)在等比数列中,依次每k项之和仍成等比数列。

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

  (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  (5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)

  (6)任意两项am,an的关系为an=am·q’(n—m)

  (7)在等比数列中,首项a1与公比q都不为零。

  注意:上述公式中a’n表示a的n次方。


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高三数学必修五知识点梳理
喜欢 (0)

您必须 登录 才能发表评论!