• 欢迎访问书法思考网,注册用户可以投稿!

高三人教版必修五数学知识点

【#高三# 导语】正如你现在根据自己的爱好想确定某个专业领域的研究,就可以查阅资料哪个心仪的大学有这样的专业,再查阅该大学近几年的录取分数线,那就应该你现在就读的学校历年升学情况,估算出应该在年级的排名,这就是你现阶段的目标,并争取实现。高三频道为你准备了以下文章,在浩瀚的学海里,助你一臂之力!
【篇一】
  正弦、余弦典型例题

  1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

  2.已知α为锐角,且,则α的度数是()A.30°B.45°C.60°D.90°

  3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A.75°B.90°C.105°D.120°

  4.若∠A为锐角,且,则A=()A.15°B.30°C.45°D.60°

  5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

  正弦、余弦解题诀窍

  1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

  2、已知三边,或两边及其夹角用余弦定理

  3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
【篇二】

  1.等差数列的定义

  如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

  3.等差中项

  如果A=(a+b)/2,那么A叫做a与b的等差中项.

  4.等差数列的常用性质

  (1)通项公式的推广:an=am+(n-m)d(n,m∈N*).

  (2)若{an}为等差数列,且m+n=p+q,

  则am+an=ap+aq(m,n,p,q∈N*).

  (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

  (5)S2n-1=(2n-1)an.

  (6)若n为偶数,则S偶-S奇=nd/2;

  若n为奇数,则S奇-S偶=a中(中间项).

  注意:

  一个推导

  利用倒序相加法推导等差数列的前n项和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  两个技巧

  已知三个或四个数组成等差数列的一类问题,要善于设元.

  (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

  四种方法

  等差数列的判断方法

  (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

  (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立;

  (3)通项公式法:验证an=pn+q;

  (4)前n项和公式法:验证Sn=An2+Bn.

  注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高三人教版必修五数学知识点
喜欢 (0)

您必须 登录 才能发表评论!