• 欢迎访问书法思考网,注册用户可以投稿!

高二数学上册必修一知识点复习

【#高二# 导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。高二频道为你整理了《高二数学上册必修一知识点复习》希望对你的学习有所帮助!

1.高二数学上册必修一知识点复习

  向量概念

  有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;

  向量的模:有向线段AB的长度叫做向量的模,记作|AB|;

  零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);

  相等向量:长度相等且方向相同的向量叫做相等向量;

  平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;

  单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

  相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

  表示方法

  几何表示

  具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→)

  有向线段AB的长度叫做向量的模,记作|AB|。

  有向线段包含3个因素:起点、方向、长度。

  相等向量、平行向量、共线向量、零向量、单位向量:

  长度相等且方向相同的向量叫做相等向量。

  两个方向相同或相反的非零向量叫做平行向量或共线向量,

  向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,

  在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)

  长度等于0的向量叫做零向量,记作0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆)

  零向量的方向是任意的;且零向量与任何向量都平行且垂直。

  模等于1个单位长度的向量叫做单位向量。

  坐标表示

  在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得

  a=xi+yj

  我们把(x,y)叫做向量a的(直角)坐标,记作

  a=(x,y),

  其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。

  在平面直角坐标系内,每一个平面向量都可以用一对实数表示。

2.高二数学上册必修一知识点复习

  1.两角和与差的正弦、余弦和正切公式

  重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

  难点:两角差的余弦公式的探索和证明。

  2.简单的三角恒等变换

  重点:掌握三角变换的内容、思路和方法,体会三角变换的特点.

  难点:公式的灵活应用.

  三角函数几点说明:

  1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

  2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

  3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

  4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

  5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

  6.两角和与差的正弦、余弦和正切公式

3.高二数学上册必修一知识点复习

  三角函数定义

  把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(x,y)。

  sin(θ)=y;

  cos(θ)=x;

  tan(θ)=y/x;

  三角函数公式大全

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-cosAsinB

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式

  tan2A=2tanA/(1-tan2A)

  Sin2A=2SinA•CosA

  Cos2A=Cos^2A–Sin2A

  =2Cos2A—1

  =1—2sin^2A

  三倍角公式

  sin3A=3sinA-4(sinA)3;

  cos3A=4(cosA)3-3cosA

  tan3a=tana•tan(π/3+a)•tan(π/3-a)

  半角公式

  sin(A/2)=√{(1–cosA)/2}

  cos(A/2)=√{(1+cosA)/2}

  tan(A/2)=√{(1–cosA)/(1+cosA)}

  cot(A/2)=√{(1+cosA)/(1-cosA)}?

  tan(A/2)=(1–cosA)/sinA=sinA/(1+cosA)

  和差化积

  sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

  积化和差

  sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

  诱导公式

  sin(-a)=-sin(a)

  cos(-a)=cos(a)

  sin(π/2-a)=cos(a)

  cos(π/2-a)=sin(a)

  sin(π/2+a)=cos(a)

  cos(π/2+a)=-sin(a)

  sin(π-a)=sin(a)

  cos(π-a)=-cos(a)

  sin(π+a)=-sin(a)

  cos(π+a)=-cos(a)

  tgA=tanA=sinA/cosA

  万能公式

  sin(a)=[2tan(a/2)]/{1+[tan(a/2)]2}

  cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]2}

  tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

  其它公式

  a•sin(a)+b•cos(a)=[√(a2+b2)]*sin(a+c)[其中,tan(c)=b/a]

  a•sin(a)-b•cos(a)=[√(a2+b2)]*cos(a-c)[其中,tan(c)=a/b]

  1+sin(a)=[sin(a/2)+cos(a/2)]2;

  1-sin(a)=[sin(a/2)-cos(a/2)]2;

  其他非重点三角函数

  csc(a)=1/sin(a)

  sec(a)=1/cos(a)

  双曲函数

  sinh(a)=[e^a-e^(-a)]/2

  cosh(a)=[e^a+e^(-a)]/2

  tgh(a)=sinh(a)/cosh(a)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

4.高二数学上册必修一知识点复习

  《不等等式》

  解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

  直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

  还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

  《立体几何》

  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

5.高二数学上册必修一知识点复习

  一、导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益问题

  3)面积、体积最(大)问题

  二、推理与证明

  1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高二数学上册必修一知识点复习
喜欢 (0)

您必须 登录 才能发表评论!