• 欢迎访问书法思考网,注册用户可以投稿!

高二数学上册知识点复习

【#高二# 导语】因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。高二频道为你整理了《高二数学上册知识点复习》,助你金榜题名!

1.高二数学上册知识点复习

  空间直线与直线之间的位置关系

  (1)异面直线定义:不同在任何一个平面内的两条直线

  (2)异面直线性质:既不平行,又不相交.

  (3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

  (4)求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.

  B、证明作出的角即为所求角

  C、利用三角形来求角

  (5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

  (6)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aaα

  (7)平面与平面之间的位置关系:

  平行——没有公共点;αβ

  相交——有一条公共直线.α∩β=b

2.高二数学上册知识点复习

  概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,….,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,….,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

3.高二数学上册知识点复习

  判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

4.高二数学上册知识点复习

  分层抽样

  先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

  两种方法

  1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

  3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

  分层标准

  (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

  (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

  (3)以那些有明显分层区分的变量作为分层变量。

  分层的比例问题

  (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

  (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

5.高二数学上册知识点复习

  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行.线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:高二数学上册知识点复习
喜欢 (0)

您必须 登录 才能发表评论!