• 欢迎访问书法思考网,注册用户可以投稿!

初二数学上册期中知识点归纳

#初二# 导语】虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。本篇文章是©为您整理的《初二数学上册期中知识点归纳》,供大家借鉴。

  

1.初二数学上册期中知识点归纳

  一、勾股定理:

  1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

  2.勾股定理的证明:

  勾股定理的证明方法很多,常见的是拼图的方法

  用拼图的方法验证勾股定理的思路是:

  (1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;

  (2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

  4.勾股定理的适用范围:

  勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

  二、勾股定理的逆定理

  1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定边;

  (2)算出边的平方与另两边的平方和;

  (3)比较边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

  三、勾股数

  能够构成直角三角形的三边长的三个正整数称为勾股数.

  四、一个重要结论:

  由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。

  五、勾股定理及其逆定理的应用

  解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。

  

2.初二数学上册期中知识点归纳

  1、在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  (1)多边形的一些要素:

  边:组成多边形的各条线段叫做多边形的边。

  顶点:每相邻两条边的公共端点叫做多边形的顶点。

  内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

  外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

  (2)在定义中应注意:

  ①一些线段(多边形的边数是大于等于3的正整数);

  ②首尾顺次相连,二者缺一不可;

  ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间

  2、多边形的分类:

  (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)。本章所讲的多边形都是指凸多边形。

  

3.初二数学上册期中知识点归纳

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的’稳定性。

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

  9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  13.公式与性质:

  ⑴三角形的内角和:三角形的内角和为180°

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和

  性质2:三角形的一个外角大于任何一个和它不相邻的内角

  ⑶多边形内角和公式:边形的内角和等于180°

  ⑷多边形的外角和:多边形的外角和为360°

  ⑸多边形对角线的条数:

  ①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形

  ②边形共有条对角线

  

4.初二数学上册期中知识点归纳

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形。

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

  ⑷对应边:全等三角形中互相重合的边叫做对应边。

  ⑸对应角:全等三角形中互相重合的角叫做对应角。

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

  3.全等三角形的判定定理:

  ⑴边边边:三边对应相等的两个三角形全等。

  ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。

  ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等。

  ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

  ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等。

  4.角平分线:

  ⑴画法:

  ⑵性质定理:角平分线上的点到角的两边的距离相等。

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

  5.证明的基本方法:

  ⑴明确命题中的已知和求证(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证。

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程。

  

5.初二数学上册期中知识点归纳

  ※图形“纵横向伸缩”的变化规律:

  A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的.n倍时,所得的图形比原来的图形在横向:

  ①当n>1时,伸长为原来的n倍;②当0

  B、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:

  ①当n>1时,伸长为原来的n倍;②当0

  ※图形“纵横向位置”的变化规律:

  A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a>0)或向左(a<0)平移了|a|个单位。

  B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b>0)或向下(b<0)平移了|b|个单位。

  ※图形“倒转与对称”的变化规律:

  A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。

  B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。

  ※图形“扩大与缩小”的变化规律:

  将图形上各个点的纵、横坐标分别变原来的n倍(n>0),所得的图形与原图形相比,形状不变;①当n>1时,对应线段大小扩大到原来的n倍;②当0

  欢迎大家去阅读由小编为大家提供的初二年级上册数学期中知识点,大家好好去品味了吗?希望能够帮助到大家,加油哦!


该文观点仅代表作者本人观点丨如未注明 , 均为原创|如侵权,联系删除丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:初二数学上册期中知识点归纳
喜欢 (0)

您必须 登录 才能发表评论!